来源:机器之心Pro
编辑:Panda
前些天,OpenAI发布了ο1系列模型,它那「超越博士水平的」强大推理性能预示着其必将在人们的生产生活中大有作为。但它的使用成本也很高,以至于OpenAI不得不限制每位用户的使用量:每位用户每周仅能给o1-preview发送30条消息,给o1-mini发送50条消息。
实在是少!
为了降低LLM的使用成本,研究者们已经想出了各式各样的方法。有些方法的目标是提升模型的效率,比如对模型进行量化或蒸馏,但这种方法往往也伴随着模型性能的下降。另一种思路则是提升运行这些模型的硬件——英伟达正是这一路线的推动者和受益者,但该公司的主要策略还是提升GPU的性能;另一些研究者则正在探索针对AI构建高效高性能的新型硬件体系。忆阻器(memristor)便是其中一个重要的研究方向。
忆阻器是一种电子元件,其能够限制或调节电路中电流的流动,并且可以记忆之前通过的电荷量。忆阻器在许多实际应用中具有重要意义,原因之一是其具备非易失性特性,即在断电情况下仍能保持记忆,这使得其在无电源或电源中断时依然能够持续使用。忆阻器被认为是和电阻器、电容器、电感同层级的基础电子元件。忆阻器的概念最早在年由华人科学家蔡少棠提出。
近日,Nature发布了一篇来自印度科学学院、得克萨斯农工大学和爱尔兰利莫瑞克大学的一篇论文,其中提出了一种「线性对称的自选择式14bit的动力学分子忆阻器」。
论文标题:Linearsymmetricself-selecting14-bitkineticmolecularmemristors
论文